AREAS AND VOLUMES FOR CALCULATING WEIGHTS
OF CASTINGS
Rectangle and Parallelogram
Area = ab
Triangle
Area = 1/2 cd.
Area = SQRT(s(s-a)(s-b)(s-c)) when
s= 1/2(a + b + c)
Example: a = 3", b = 4", c = 5"
s = (3" + 4" + 5")/2 = 6"
Area = SQRT(6 (6-3) (6-4) (6-5)) = 6 sq. in.
Regular Polygons
n = Number of sides, s= Length of one side, r= Inside radius
Area = 1/2 nsr
Number
of Sides |
Area |
5 |
1.72047 s2 = 3.63273 r2 |
6 |
2.59809 s2 = 3.46408 r2 |
7 |
3.63395 s2 = 3.37099 r2 |
8 |
4.82847 s2 = 3.31368 r2 |
9 |
6.18181 s2 = 3.27574 r2 |
10 |
7.69416 s2 = 3.24922 r2 |
11 |
9.36570 s2 = 3.22987 r2 |
12 |
11.19616 s2 = 3.21539 r2 |
Trapezium
Area = 1/2 [a (e + d) bd + ce]
Example: a = 10", b = 3", c = 5", d = 6", e = 8"
Area = 1/2 [10 (8 + 6) + (3 X 6) + (5 X 8)] = 99 sq. in.
Square
The diagonal of a square = A X 1.414
The side of a square inscribed in a given circle is: B X .707.
|
31
|
Circle
θ (the Greek letter Theta) = angle included between radii
π (pi) = 3.1416, D = Diameter, R = Radius, C = Chord.
h = Height of Arc, L = Length of Arc.
Circumference = πD = 2πR = 2 SQRT(π X Area)
Diameter = 2 R = Circumference / π = 2 SQRT(Area/π)
Radius = 1/2 D = Circumference / 2 π = SQRT(Area/π)
Radius = ((c/2)2 + h2)/2h
Area = 1/4 π D2 = 0.7854 D2 = π R2
Chord = 2 SQRT(h (D - h)) = 2R X sine 1/2θ
Height of Arc, h = R - SQRT(R2-(C/2)2)
Length of Arc, L = θ/360 x 2 π R = 0.0174533 Rθ
1/2 θ (in degrees) = 28.6479 L/R
Sine(1/2 θ) = (C/2) / R
Sector of a Circle
Area = 1/2 LR
Example: L = 10.472", R = 5"
Area = 10.472/2 x 5 = 26.180 sq. in.
or Area = π R2 X θ/360 = 0.0087266 R2θ
Example: R = 5", θ = 120°
Area = 3.1416 X 52 X 120/360 = 26.180 sq. in.
Segment of a Circle
Area = πR2 X θ/360 - C(R - h)/2
Example: R = 5", θ = 120°, C = 8.66", h = 2.5"
Area = 3.1416 X 52 X 120/360 - (8.66(5 - 2.5))/2 = 15.355 sq. in.
Length of arc L = 0.0174533 R θ
Area = 1/2 [LR-C (R-h)]
Example: R = 5", C = 8.66", h = 2.5", θ = 120°
L = 0.0174533 X 5 X 120 = 10.472"
Area = 1/2[(10.472 X 5) - 8.66(5 - 2.5)] = 15.355 sq. in.
|
32
|
Circular Ring
Area = 0.7854 (D2-d2), or 0.7854 (D-d)(D+d)
Example: D = 10", d = 3"
Area = 0.7854 (102 - 32) = 71.4714 sq. in.
Spandrel
Area = 0.2146 R2 = 0.1073 C2
Example: R = 3
Area = 0.2146 X 32 = 1.9314
Parabolic Segment
Area = 2/3 sh
Example: s = 3, h = 4
Area = 2/3 X 3 X 4 = 8
Ellipse
Area Tab = πab = 3.1416 ab
Example: a = 3, b = 4
Area = 3.1416 X 3 X 4 = 37.6992
Irregular Figures
Area may be found as follows:
Divide the figure into equal spaces as shown by the lines in the figure.
(1) Add lengths of dotted lines.
(2) Divide sum by number of spaces.
(3) Multiply result by "A."
|
33
|
Ring of Circular Cross Section
Area of Surface = 4 π2Rr = 39.4784 Rr
Area of Surface = π2 Dd = 9.8696 Dd
Volume = 2 π2 Rr2 = 19.7392 Rr2
Volume = 1/4 π2 Dd2 = 2.4674 Dd2
Sphere
Surface = 4 π r2 = 12.5664 r2 = π d2
Volume = 4/3 π r3 = 4.1888 r3
Volume = 1/6 π d3 = 0.5236 d3
Segment of a Sphere
Spherical Surface = 2 π rh = 1/4 π(c2 + 4h2) = 0.7854 (c2 + 4h2)
Total Surface = 1/4π (c2 + 8 rh) = 0.7854 (c2 + 8 rh)
Volume = 1/3 π h2 (3 r - h) = 1.0472 h2 (3 r - h)
or
Volume = 1/24 πh (3c2 + 4h2) = 0.1309 h (3c2 + 4h2)
Sector of a Sphere
Total Surface = 1/2πr (4 h + c) = 1.5708 r (4 h + c)
Volume = 2/3 πr2h = 2.0944 r2h
Cylinder
Cylindrical Surface = π dh = 2 πrh = 6.2832 rh
Total Surface = 2 π r (r + h) = 6.2832 (r + h)
Volume = π r2h = 1/4 πd2h = 0 7854 d2h
|
34
|
Pyramid
A = area of base
P = perimeter of base
Lateral Area = 1/2 Ps
Volume = 1/3Ah
Frustum of a Pyramid
A = area of base
a = area of top
m = area of midsection
P = perimeter of base
p = perimeter of top
Lateral Area = 1/2s (P + p)
Volume = 1/3h (a + A + SQRT(aA)
Volume = 16h (A + a + 4m)
Cone
Conical Area = πrs = πr SQRT(r2 + h2)
Volume =1/3 π r2h = 1.0472 r2h = 0.2618 d2h
Frustum of a Cone
A = area of base
a = area of top
m = area of midsection
R = D / 2; r = d / 2
Area of Conical Surface = 1/2 πs (D + d) = 1.5708 s (D+d)
Volume = 1/3 h (R2 + Rr + r2) = 1.0472 h (R2 + Rr + r2)
Volume = 1/12 h (D2 + Dd + d2) = 0.2618 h (D2 + Dd + d2)
Volume = 1/3h (a + A + SQRT(aA)) = 1/6 h (a + A + 4m)
|
|
No comments:
Post a Comment